CPU as the New Perimeter

Attestation and Memory Encryption Protect Sensitive
Data in the Cloud

Oded Horovitz
Co-Founder & CEO
PrivateCore Inc

Input

10010010101

Output

10010010101

Computation

Processing

Internal State

fx)=y [

10010010101
01001001001
00100100010

Processing composition

Input Processing
10010010101 1

Output f(x) =y < >
10010010101 [&—

Composed of:

Internal State

10010010101
01001001001
00100100010

Hardware

Software

Policy

VIUTAK

Internal Storage hierarchy

InpUt Processing Internal State
10010010101 [—

10010010101

Output f(x)=vy <«—> 01001001001

00100100010
10010010101 [&—

Storage Hierarchy
CPU :
HDD Flash RAM Cache Registers

~persistent

Hacking, exploits existing vulnerabilities

Input

Processing Internal State
10110101101 |—_>
10010010101
Output f(x) =y |€——>{ 01001001001
00100100010
10010010101 f¢——

Physical attack, walking with the data

Input

Processing Internal State

10010010101 [—
10010010101
Output f(x)=y [¢&—>{ 01001001001
00100100010

10010010101 [&——

Lets add Operations

User 1I/O Processing
10010010101 St =y
Internal State
Developers 10010010101
<—> 01001001001
New code e > Tupgrade(x) 00100100010
IT
f-config(x
Settings [€ g(x)

Admin hack - self provision access

User 1I/O Processing
10010010101 [« > £(x) =
b=y Internal State
Developers 10010010101
<—> 01001001001
New code ¢ > Tupgrade(x) 00100100010
IT
f-config(x
Settings [€ > g(x)

Developer hack — Introducing backdoors

User 1I/O Processing
10010010101 |< > I
x) =y Internal State
Developers > f-hackdoor(x) 10010010101
f-upgrade(y) | €| 01001001001
Backdoor |e > 00100100010
T

f-config(x)

Settings [€ >

Add risk of public communications

User I/O

10010010101

1001
0010

Processing

f(x) =y

Internal State

10010010101
01001001001
00100100010

Also, real systems show complex composition

Up the stack!

Host OS

Physical
server

Still, real systems show complex composition

Host OS

Down the stack!

Sample attacks at the laaS level

Integrity attacks
4% SMM infection
== HDD firmware infection

injected kernel arguments

Physical attacks
Grabbing clear private SSH keys
Cold-boot

Logical access attacks
Inception
DMA capture of mysgl records
Malicious device I/0O

SMM Infection, execution integrity forever lost

! 06/20/08 i

Status: Released / Deployed. Ready for Llnit[cast: SSD)
Immediate Delivery

HDD firmware infection, WYSINWYG

o. | | - ...

! 06/20/08 i

Status: Released / Deployed. Ready for Llnit[cast: SSD)
Immediate Delivery

Injected kernel argument & SSH key grab

§ Piwjmsa | NS5 | jbew Uinm ediling o supporisd. Fer the Virsi soed. 76
Bimts g ihbe O Comg et o . Amgeleitre @los BN loans nhe pe Lb e
e comcmis. (ENTER

oy el o of & device T | e N &l amp L&
wil smy (imw soopis ger chasges 1

€ EETIRELE <un v M0 righ it r+l1.--'lllr'lull|h

nich the kernel command line can be edited

http://youtu.be/6C0b3nMXeGU

Cold-boot attack, grabbing memory

http://youtu.be/55Kq900Luyo

Inception rewriting your memory

http://youtu.be/wki66w1iJHA

DMA laaS (Inception-as-a-Service)

http://youtu.be/Al-XbzKO7HM

Malicious device I/O

OS Developers are not writing defensive

device drivers...

In response for our submitted drivers vulnerabilities:

"These are lengths written by hardware, so will only be
wrong if the hardware is broken. If the hardware is
broken (or replaced by something malicious) then it can
do anything it likes. Invalid values in ring entries are the
least of your worries."

So how do we protect against such attacks?

IT Security Job |: Prevent physical grab

User 1I/O Processing
10010010101 [< S £y =
b=y Internal State
Developers 10010010101
<—> 01001001001
New code e > Tupgrade(x) 00100100010
IT
f-config(x
Settings [€ g(x)

IT Security Job II: Check system integrity & lockdown

Processing
User | 10010010101 |e 5| Internal State
f(x) =y
10010010101
Dev New code |€ > f-upgrade(x) [«——> 01001001001
00100100010
f-config(x)
I Settings <

A

Hardware || Software Policy

IT Security Job Ill: Secure logical access

Processing
User | 10010010101 |e) Internal State
f(x) =y
10010010101
Dev New code |€ —> f-upgrade(x) [«—>{ 01001001001
00100100010
f-config(x)
T Settings |*]

IT Security Job IV: Encrypt public 1/0

Processing Internal State

User I/O
10010010101
10010010101 (& —> f(x) =y 01001001001
00100100010

So how do we protect against such attacks?

Integrity attacks
*z SMM infection Hardware || Software Policy

=% HDD firmware infection
injected kernel arguments

Physical attacks 100100
Grabbing clear private SSH keys 100110
Cold-boot 110010

Logical access attacks
Inception

DMA capture of mysgl records

Malicious device I/O

The Cloud Challenge

How can a tenant verify integrity?
Who defines an “OK” stack?

SaaS

What’s a good physical perimeter?
The data-center?

Cage?
Server?
CPU?

laaS

1/

(Encryption depends on the above question)

Should laaS CSPs take more
responsibility? Or give more control
to customer?

Bare-Metal-aa$S

LEEEE

Our mantra for secure laasS (i xss world)

1. Enable TPM & TXT

Saa$s
2. Choose a policy for hypervisor (i.e.
“below the VM”) secure configuration. Tip:
Consider stateless hypervisors.
3. Verify than trust. Give no secrets to
unverified systems

laaS

|/ ' v
4. Decide on physical perimeter

Best — CPU |‘ |‘ |‘

Good — The server e
Risky — Data-center A

Bare-Metal-aa$S 5. Encrypt outside your chosen perimeter!

(storage & network)

LE

PrivateCore vCage Host

The CPU as the perimeter of computation

PrivateCore vCage Host

The CPU as the perimeter of computation

e Physical security is the CPU package itself

PrivateCore vCage Host

The CPU as the perimeter of computation

e Physical security is the CPU package itself
* Loading stateless image into CPU cache

PrivateCore vCage Host

The CPU as the perimeter of computation

e Physical security is the CPU package itself
* Loading stateless image into CPU cache
e Test system integrity via Intel TXT

PrivateCore vCage Host

The CPU as the perimeter of computation

e Physical security is the CPU package itself
* Loading stateless image into CPU cache

e Test system integrity via Intel TXT

e Provision secrets (keys)

PrivateCore vCage Host

The CPU as the perimeter of computation

e Physical security is the CPU package itself
* Loading stateless image into CPU cache

e Test system integrity via Intel TXT

e Provision secrets (keys)

e Add logical security

— DMA protection 4 100100
. . 100110
— Filter device 10 | 110010 88
1

Logical Security Control

PrivateCore vCage Host

The CPU as the perimeter of computation

e Physical security is the CPU package itself
* Loading stateless image into CPU cache

e Test system integrity via Intel TXT

e Provision secrets (keys)

e Add logical security

— DMA protection 100100
. . 100110
— Filter device 10 ‘ 110010

 Encrypt anything outside the CPU

Loglcal Security Control

%SF2
Y&5u

PrivateCore

CARMA
Frozen Cache
Tresor

Cryptkeeper

Status quo

Registers

CPU Cache

RAM

DISK

A reasonable performance tradeoff

The CPU & DRAM as the perimeter of
computation

* Encrypt anything outside the CPU &
DRAM

 Cons: Vulnerable to “cold-boot”,

“malicious DIMM” & bus analysis : | 100100
L Lo 100110
* Pro: High integrity without the | 110010 &R
.

performance penalties !
e Ideal for public cloud environments Logical Security Control

%SF2
Y&5u

Biggest challenges

e Squeeze the Linux kernel into < 10MB while
— Keeping all virtualization features
— Keeping it stable (No OOM allowed)

e Keep CPU cache under our control

e Performance work
— Squeeze different data structure to reduce working set
— Identify new hot-paths in the kernel
— Utilize AESNI capabilities

What’s coming?

Offensive

Deeper down the stack we go!
Sniffing and MITM any bus
facedancer — USB hacking in python! 555

Defensive

Intel SGX — A huge step toward CPU as physical perimeter
More Open Source software & hardware

Q&A

Oded Horovitz
oded@privatecore.com

